Inferred Lighting:
Fast dynamic lighting and shadows for opaque and translucent objects

Scott Kircher*
Volition, Inc.

Alan Lawrance’
Volition, Inc.

Figure 1: Inferred lighting allows this complex scene with 213 active lights to be rendered at 1280x720 resolution, with 8x MSAA, at 23fps
(43.5ms) on a GeForce 8800GTX.

Abstract

This paper presents a three phase pipeline for real-time rendering
that provides fast dynamic light calculations while enabling greater
material flexibility than deferred shading. This method, called in-
ferred lighting, allows lighting calculations to occur at a signif-
icantly lower resolution than the final output and is compatible
with hardware multisample antialiasing (MSAA). In addition, in-
ferred lighting introduces a novel method of computing lighting and
shadows for translucent objects (alpha polygons) that unifies the
pipeline for processing lit alpha polygons with that of opaque poly-
gons. The key to our method is a discontinuity sensitive filtering
algorithm that enables material shaders to “infer” their lighting val-
ues from a light buffer sampled at a different resolution. This paper
also discusses specific implementation issues of inferred lighting
on DirectX 10, Xbox 360, and PlayStation 3 hardware.

*e-mail: scott.kircher@volition-inc.com
Te-mail: alan.lawrance @volition-inc.com

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: real-time rendering, fast dynamic lighting, alpha-
polygon shadows, deferred shading

1 Introduction

Dynamic lighting is an important graphical aspect of many enter-
tainment software titles. In particular, the lighting situation in so-
called open world games can change drastically between day and
night scenes. During night scenes, it is often desirable to have a
very large number of dynamic lights for cars, neon signs, and so
on. Even seemingly static lights, such as street lights, must be able
to light dynamic objects, and so their lighting cannot be solely pre-
computed. The method described in this paper is not restricted to
open world games, however. Any game featuring a very large num-
ber of dynamic lights could potentially benefit.

Traditionally, games have relied on a technique that is commonly
called forward rendering for handling multiple dynamic lights. In
forward rendering, the interactions between each light and each ob-
ject in the scene must be explicitly accounted for. For example, the
rendering engine typically must query the scene to determine which
objects a particular light affects. In many cases, a pass over at least
a portion of the scene geometry is required for each light. These
queries and rendering passes can be quite expensive, and must be
performed regardless of whether or not the light casts shadows.

An increasingly popular technique called deferred shading allows

the scene geometry to be rendered only once, and then non-
shadow casting lights are applied as screen-space operations [Saito
and Takahashi 1990; Shishkovtsov 2005; Filion and McNaughton
2008]. This solves the light-object interaction complexity problem,
but makes it difficult to implement advanced material shaders, as
effectively one material shader must be able to handle all desired
shading effects. In addition deferred shading is incompatible with
lighting alpha polygons. Deferred shading renderers must revert to
forward rendering to light translucent objects [Shishkovtsov 2005].

This paper presents a dynamic lighting method, called inferred
lighting that combines the strengths of forward rendering with
those of deferred shading. Our method enables a very large num-
ber of non-shadow casting dynamic lights, while allowing material
shaders to be almost as flexible as in forward rendering. In ad-
dition, inferred lighting introduces a new method for lighting al-
pha polygons, allowing the same lighting techniques to be used on
translucent and opaque objects. This method even makes translu-
cent objects compatible with stencil shadow volumes [Heidmann
1991], which has traditionally not been possible.

1.1 Related Work

The rendering technique now called deferred shading is sometimes
credited to Deering et al. [1988], but it was more directly intro-
duced by Saito and Takahashi [1990] for non-photo-realistic ren-
dering. Saito and Takahashi rendered objects into a geometry buffer
(G-buffer) storing normals, depth, and other geometric properties,
and then performed 2D image space techniques to extract con-
tours, silhouettes, and other information. Deferred shading ap-
peared again in the PixelFlow hardware architecture proposed by
Molnar et al. [1992].

The advent of multiple-render-target (MRT) technology in 2002
made deferred shading an effective real-time rendering technique
[Thibieroz 2004; Hargreaves and Harris 2004]. Since then it
has appeared in several game engines including S.T.A.L.K.E.R.
[Shishkovtsov 2005], Killzone 2 [Valient 2007], and StarCraft 2
[Filion and McNaughton 2008].

Standard deferred shading turns lighting into a simple screen-space
operation and thereby makes non-shadow casting lights very cheap.
However, because all data needed for shading must be stored in
the G-buffers, increasing material complexity means more storage
space required for G-buffer data, and more memory bandwidth con-
sumed reading and writing that data. This places severe limits on
the kinds of materials that can be rendered with deferred shading
on current game console hardware. In addition, deferred shading is
fundamentally incompatible with lit alpha polygons. Short of the
K-buffer hardware modifications proposed by Bavoil e al. [2007],
the G-buffer cannot store more than one set of geometry data per
pixel. Thus, multiple layers of lighting are not possible. Translu-
cent geometry must be lit using a separate forward rendering pass.

So-called light pre-pass rendering, as proposed by Engel [2008]
mitigates the material complexity problem of deferred shading. In
his approach, the G-buffer contains very little information (ze., only
normals and depth). Lighting calculations are then partially per-
formed as screen-space operations into another light buffer, and
then a second scene geometry pass is rendered using the lighting
buffer as input for a full material shader. Light pre-pass rendering
is also being used by Insomniac Games [Lee 2008], and is closely
related to our proposed method. However, light pre-pass rendering
still requires alpha polygons to be lit in a separate forward render-
ing pass, and requires that the light buffer be full resolution to avoid
significant lighting artifacts. Inferred lighting and light pre-pass
rendering were developed concurrently and independently.

Figure 2: (Top Left:) The 800x450 normals G-buffer. (Top Right:)
The 800x450 DSF data G-buffer. (Bottom Left:) The 800x450 L-
buffer after rendering lighting. (Bottom Right:) The final 1280x720
S8xMSAA output framebuffer.

2 The Inferred Lighting Pipeline

The pipeline for inferred lighting consists of three distinct stages,
a geometry pass, light pass and material pass. There are no addi-
tional passes necessary for translucent geometry.

2.1 Geometry Pass

The first pass stores geometric properties to screen-space buffers
called G-buffers. The information stored in these buffers will de-
pend on the needs of the light pass, but at a minimum it will consist
of normals, depth, and discontinuity sensitive filter (DSF) data. Vi-
sualization of the view-space normals and DSF G-buffers are shown
at the top left and right of Figure 2, respectively.

The normals use 16 bits per component, but only the X and Y com-
ponents are stored since the Z component can be reconstructed in
the shader. A mapping from full sphere to half sphere is used to
avoid storing a Z sign bit. For a right-handed coordinate system,
the mapping for a view-space normal n is

/ n+(07071)
n=——"11 (1)
[[n -+ (0,0,1)||

where only the X and Y components of n are stored in the normal
buffer. The reverse mapping, used when the normal buffer is read,

1S
2= /1= [, I, @

n = (2zny, 220y, 222 — 1). 3)

The mapping has a singularity at n = (0,0, —1), but this would
be a normal facing directly away from the viewer, and should never
need to be encoded.

DSF data is stored as two 16 bit values, linear depth of the pixel and
an ID value. Details on how the DSF data is used in the material
pass is explained in §3.

Other data can be stored in the G-buffer, such as specular power,
motion vectors (for per-object motion blur), or a material ID to al-
low for BRDF lighting. Details on using additional G-buffer data

is beyond the scope of this paper, but it is expected that users of in-
ferred lighting will tailor G-buffer usage to suit their specific needs.
Creating additional G-buffers should be done with care, as they are
memory intensive and incur a performance cost.

2.2 Light Pass

The second pass calculates the contribution of the ambient and dy-
namic lights that affect the scene. Lighting calculations are per-
formed in screen-space using the G-buffer as input, and the results
are written to the light buffer (L-buffer) for use in the material pass.
Since lighting is done entirely in screen-space, there are no geom-
etry passes necessary for non-shadow casting lights. As a conse-
quence of the fact we use a lower resolution G-buffer and L-buffer
than our final output, the viewpoint will have to get closer to a sur-
face before normal map detail will become apparent in the lighting.
Implementations can trade off between speed and quality by adjust-
ing the G-buffer/L-buffer resolution.

The L-buffer consists of four 16 bit channels. The diffuse lighting
in stored in the RGB channels, and specular lighting in the alpha
channel. The specular lighting value is encoded as the accumulated
intensity of the specular highlight. The specular color is recon-
structed in the material pass by scaling the stored intensity by the
color of the diffuse lighting.

For each light processed in the light pass, a full screen quadrilat-
eral polygon is rendered that executes the lighting shader for every
screen pixel. Since a given light may only affect a portion of the
screen, there are two optimizations available to skip pixels not af-
fected by light. The first is to apply a scissor rectangle that bounds
the screen-space influence of the light. The second is to utilize the
stencil buffer to determine where the light volume intersects visible
scene geometry. We use the depth-fail stencil volume technique, as
described in [Kwoon 2004]. These optimizations should be used to-
gether, but it can be faster to skip the stencil optimization for lights
that take up a very small amount of screen space.

2.3 Material Pass

The final pass renders the scene using full material shaders but sam-
ples lighting values from the L-buffer rather than doing its own
light calculations. Alpha objects must be sorted and rendered af-
ter opaque objects, but are lit in the same manner.

The material pass is rendered at the framebuffer resolution, which
is higher than the resolution used for the L-buffer. This requires the
material pass to up-sample from the L-Buffer and perform special
filtering, which is described in §3.

3 Discontinuity Sensitive Filtering

The inferred lighting pipeline as described in §2 allows the geom-
etry pass and light pass to occur at a lower resolution than the ma-
terial pass. This saves both memory and pixel shading costs. How-
ever, the lower lighting resolution will be visible along the edges
of objects in the scene, resulting in unacceptable aliasing. This is
especially noticeable when the foreground and background objects
receive drastically different lighting values as in Figure 3.

Our solution to this problem is to perform discontinuity sensitive
filtering (DSF) of the L-buffer as it is read during the material pass.
During the geometry pass, one 16 bit channel of the DSF buffer
is filled with the linear depth of the pixel, the other 16 bit channel
is filled with an ID value that semi-uniquely identifies continuous
regions. This ID is described in more detail in §3.1.

Figure 3: (Top:) Using an 800x450 single-sampled L-buffer with
a 1280x720 8xMSAA framebuffer, with no DSF, results in badly
aliased lighting. (Bottom:) DSF solves this problem.

Figure 4: DSF sampling uses only L-buffer samples that match the
surface being rendered in the material pass. In this example, the
dotted grid represents the high-resolution framebuffer. The solid
grid represents the low resolution L-buffer. When material shading
pixel p, which is part of the gray surface, sample d is thrown out,
and only samples a, b, and c are used to light p.

During the material pass, the pixel shader computes the locations of
the four L-buffer texels that would normally be accessed if regular
bilinear filtering were used. These four locations are point sampled
from the DSF buffer. The depth and ID values retrieved from the
DSF buffer are compared against the depth and ID of the object
being rendered. The results of this comparison are used to bias
the usual bilinear filtering weights so as to discard samples that do
not belong to the surface currently rendering (see Figure 4). These
biased weights are then used in custom bilinear filtering of the L-
buffer. Since the filter only uses the L-buffer samples that belong
to the object being rendered, the resulting lighting gives the illusion
of being at full resolution. This same method works even when
the framebuffer is multisampled (hardware MSAA), however sub-
pixel artifacts can occur, due to the pixel shader only being run once
per pixel, rather than once per sample. Such sub-pixel artifacts are
typically not noticeable.

In the rare case where all four L-buffer samples are unusable the
pixel shader falls back on regular bilinear filtering, possibly result-
ing in a small lighting artifact.

Our method of computing lighting at a lower resolution and then
up-sampling with the aide of a discontinuity sensitive filter is sim-
ilar in spirit to the interleaved sampling and discontinuity filtering
methods proposed by Segovia, ef al. [2006]. However, we feel our

DSF method is simpler, more efficient (does not require walking the
buffer to find discontinuities), and more suited to game rendering.

3.1 Object and Normal-Group IDs

The ID value stored in the second channel of the DSF buffer con-
sists of two parts. The upper 8 bits are an object ID, assigned per
object (renderable instance) in the scene. Since 8 bits only allows
256 unique object IDs, scenes with more than this number of ob-
jects will have some objects sharing the same ID. In theory this can
lead to low probability DSF artifacts. In practice, we have never
observed such artifacts.

The lower 8 bits of the channel contain a normal-group ID. This ID
is pre-computed and assigned to each face of the mesh. Anywhere
the mesh has continuous normals, the ID is also continuous. In our
implementation, a normal is continuous across an edge if and only
if the two triangles that abut the edge share the same normals at
both vertices of the edge.

By comparing normal-group IDs the discontinuity sensitive filter
can detect normal discontinuities without actually having to recon-
struct and compare normals. Both the object ID and normal-group
ID must exactly match the material pass polygon being rendered be-
fore the L-buffer sample can be used (depth must also match within
an adjustable threshold).

We pre-compute normal-group IDs by first constructing the dual
graph of the mesh in question. We then remove any edges in the
dual graph across which the mesh has discontinuous normals, and
randomly assign normal-group IDs to each connected component
of the resulting graph. These IDs are assigned to the corresponding
faces of the original mesh. In our implementation, we pack the
normal-group IDs into the fourth component of the mesh tangent
vectors.

4 Lighting Alpha Polygons

In addition to allowing the L-buffer resolution to be less than the
output framebuffer resolution, DSF also enables a novel method of
lighting alpha polygons. The main idea is that alpha polygons are
rendered during the geometry pass using a stipple pattern, so that
their G-buffer samples are interleaved with opaque polygon sam-
ples. The light pass will automatically light those stippled pixels.
No special case processing during the light pass is necessary, as
long as the lighting operations are one to one (i.e., do not involve
blurring of the L-buffer). In the material pass the DSF for opaque
polygons will automatically reject stippled alpha pixels, and alpha
polygons are handled by finding the four closest L-buffer samples
in the same stipple pattern, again using DSF to make sure the sam-
ples were not overwritten by some other geometry.

Figure 5 shows (left) an example of how the stipple pattern for a
translucent object (the cockpit window glass) interleaves with the
opaque object samples in the L-buffer. It also shows (right) the
final result after the material pass. Since the stipple pattern is a
2 x 2 regular pattern, the effect is that the alpha polygon gets lit
at half the resolution of opaque objects. Opaque objects covered
by one layer of alpha have only slightly reduced lighting resolution
(one out of every four samples cannot be used).

For alpha polygons it is possible to simply use a discontinuity sen-
sitive bilinear filter (as in §3), with the sample locations taking into
account the lower resolution sampling pattern. However, we use a
small radius cone filter on the nearest four stipple samples, as we
found it gave slightly higher quality results. DSF data should be
used to throw out samples that don’t belong to the surface in ques-
tion, regardless of filtering method.

Figure 5: (Left) In the L-buffer, alpha polygon samples are inter-
leaved with opaque polygon samples. (Right) During the material
pass, DSF and knowledge of the stipple pattern resolves appropri-
ate lighting values.

Figure 6: A helicopter blade casting a shadow on 3 overlapping
layers of alpha polygons. Inferred lighting allows alpha polygons
to be lit in essentially the same way as opaque polygons.

Multiple layers of lit alpha objects can be achieved by assigning a
different stipple pattern to each layer. We use a 2 x 2 regular pattern,
which means there are four available patterns. Thus, up to four lay-
ers of overlapped lighting are possible (including the opaque back-
ground). Typically, by this point the background is so obscured by
layers of alpha that loss of lighting information is not catastrophic.
Different sampling patterns can be used. For example, a 4 x 4 pat-
tern would allow up to 16 layers, but at greatly reduced resolution.
Figure 6 shows an example of multiple layers of alpha objects being
lit by inferred lighting.

When using multiple stipple patterns, it must be decided what pat-
tern to use for each layer. Currently we either statically assign the
patterns with user input, or assign them dynamically based on the
depth of the objects. Neither method is optimal, but both suffice for
scenes without too many dynamic, overlapping alpha objects.

Our method of lighting alpha polygons can accommodate any light-
ing/shadow algorithm that is one to one in terms of L-buffer pixels.
Thus, it can even be used with stencil shadow volumes, which are
otherwise incompatible with translucent geometry.

5 Platform Specific Implementation Issues

We have implemented inferred lighting under DirectX 10 as well
as two current generation game consoles, the Xbox 360 and the
PlayStation 3. The technique works equally well on all three plat-
forms, but there are platform specific implementation issues, espe-
cially on the game consoles. The only issue on DirectX 10 is that
the depth surface must be resolved to an R24X8 texture before it

can be read. All other surfaces can be read from directly.

5.1 Xbox 360

The Xbox 360 has 10MB of high performance video memory
known as EDRAM. Special care must be taken when setting up the
G-buffers and L-buffer in video memory, as none of the G-buffers
can overlap. The L-buffer can share EDRAM with G-buffers, but
ensure it doesn’t overlap with the depth G-butfer as this can be used
in the light pass if using the stencil optimization. It is not possible
to read directly from EDRAM, so screen buffers must be resolved
to textures.

The format of the DSF buffer (two 16 bit channels) in EDRAM is
fixed point with a range of -32 to 32. The corresponding texture
format is fixed point with a range of 0 to 1. This requires the shader
to scale the shader output of 0 to 1 to -32 to 32. To maintain 16 bit
precision, the texture used for the resolve needs to be created with
a custom format that has a range of -1 to 1. When sampling from
this texture in a shader, the results must be scaled to a 0 to 1 range.

The Xbox 360 uses the same pixel center convention as DirectX 1
though 9, which requires special handling in shaders. This can be
avoided by setting the render state D3DRS_HALFPIXELOFFSET
to true. This will ensure the Xbox 360 uses the same pixel center
convention as DirectX 10 and the PlayStation 3.

5.2 PlayStation 3

The PlayStation 3 does not support a surface format with two 16
bit channels. It is possible to work around this limitation by using
an ARGBS surface format and packing two 16 bit values into four
8 bit values. When binding the surface to a sampler, a texture for-
mat remap must be used to ensure the texture is read correctly as
CELL_.GCM_TEXTURE_Y16_X16.

Although this solves the problem of storing the normals and DSF
data as 16 bits per component, it does cause an issue with blending
normals. An example is alpha blending a normal map decal onto a
surface. Since all four channels of the normals G-Buffer are used
to contain the packed 16 bit values, there is no channel available to
write the alpha value.

One solution to this problem is to treat the decal object as an alpha
object. This will ensure lighting is computed for both the decal and
the underlying surface, and the two will be blended together in the
material pass. The downsides are that we consume an alpha layer,
and the lighting on the decal will be at a lower resolution.

Multiple render target support on the PlayStation 3 requires that
all color targets are the same number of bits per pixel. This isn’t
a problem for the standard G-buffer set-up of 32 bits for normals
and DSF data, but it’s a restriction to keep in mind when designing
G-buffers for cross-platform compatibility.

Finally, reading from the depth buffer on the PS3 requires a texture
format remap of BARG and use of the texture sampling function
texDepth2D _precise().

6 Additional Results

We have demonstrated several inferred lighting results throughout
the above sections. Additional results and timing information fol-
low.

Figure 7 shows a scene with 287 lights and 287 objects running
with inferred lighting (but without MSAA) on a PlayStation 3. The
GPU time is 5.03ms (199fps). Such tightly packed scenes are nearly

FA‘ ukn gpg

(]
L]

ool vuop
“om_ & B B b B I e
& E DED G oD 1NN Dosss g e me e
= B F Bt mES. PR EE SR
an Btﬁﬂ ﬁﬁﬁnu nmin O DB EE N mom wen

A e
uss

—

)
"_j
i

1]
]
L
E

Figure 7: A simple scene with 287 lights and 287 objects running
at 199fps (5.03ms) on a PlayStation 3.

Figure 8: A scene with 101 objects and 81 omni lights running at
34fps (29.4ms) with inferred lighting on the Xbox 360. This same
scene runs at 6fps (167ms) with forward rendering.

the worst case for forward rendering. For such scenes, forward
rendering complexity would be O(nl), where n is the number of
objects and [is the number of lights. This is significantly worse
than inferred lighting’s complexity of O(n + 1) (which is the same
as the complexity of deferred shading and light-prepass rendering).

Figure 8 shows a scene with 101 objects and 81 omni lights running
at 34fps (29.4ms) with inferred lighting on the Xbox 360. The same
test scene using an optimized forward renderer, which has been in
development for several years, runs at 6fps (167ms). Although this
test is a nearly worst case example for forward rendering, it clearly
shows how well inferred lighting handles a large number of non-
shadow casting lights.

Figure 9 shows the usefulness of using a lower-resolution L-bufter
with DSF in the material pass. There are 122 non-shadowing lights
in the scene. Both images use a 1280x720 framebuffer with 8x
MSAA. The top picture uses a low resolution (800x450) L-buffer
with DSF, and renders at 40 frames per second (25ms) on a GeForce
8800GTX. The bottom picture uses a full resolution (1280x720) L-
buffer without DSF, and renders at 31 frames per second (32ms).
In addition to the lower frame rate, notice that the bottom picture
exhibits more aliasing on, for example, the handrails. This is due
to the fact that the G-buffer was not multisampled. Having a mul-
tisampled G-buffer is not even possible on most platforms (since
the buffer must be resolved before it is read), and even if it were, it
would further reduce performance. Also, since the bottom picture
does not use DSF, many full-alpha objects had to be replaced with
alpha-tested objects, resulting in yet more aliasing.

As just alluded to, our alpha lighting technique can be applied to
full-alpha chain link fences and other traditionally alpha-tested ob-
jects like barbed wire and foliage (see Figure 10). This is use-
ful because alpha-testing is currently incompatible with hardware

Figure 9: A scene with 122 dynamic lights. Using an 800x450 L-
buffer with a 1280x720 8x MSAA framebuffer and DSF (Top) results
in both better quality anti-aliasing and faster framerate (40fps vs
31fps) than using a 1280x720 L-buffer with no DSF (Bottom).

MSAA. To achieve the best results, we recommend doing an alpha-
test in the geometry pass, in addition to the stipple pattern, to ensure
that no stippled lighting samples are written in regions of complete
transparency.

7 Conclusion

Inferred lighting allows for a very large number of non-shadow
casting dynamic lights while supporting complex material shaders,
a unified pipeline for lighting translucent and opaque objects, and
hardware MSAA compatibility.

The distinguishing feature of inferred lighting is the DSF algorithm
which allows lighting to occur at a lower resolution than the final
output and provides a novel approach to lighting alpha polygons
without additional scene processing.

7.1 Limitations and Future Work

While inferred lighting works very well in the case where there is a
large number of lights or other operations occurring at the L-buffer
resolution, it does incur a higher base cost (when there are no, or
very few, lights) than deferred shading or light-prepass rendering.
Further optimizations to the DSF algorithm will help ameliorate
this. For example, we have plans to reduce the number of samples
taken from the L-buffer, by leveraging the bilinear filter available in
hardware.

Also, while the alpha lighting method solves the traditional problem
of how to apply all lights and shadows in a scene to translucent
objects, it is limited to a small number of lighting layers. Moreover,
assigning stipple patterns in an optimal way (either dynamically or

Figure 10: Inferred alpha polygon lighting can be used to light
Sull-alpha chain link fences and other objects usually handled by
alpha-testing.

statically) is an open problem worthy of further research.

Acknowledgements Special thanks to Tomas Arce who was in-
strumental in the initial design of inferred lighting, and to Ja-
son Lowe who implemented the first PS3 version of the algo-
rithm. Thanks also to Mike Flavin, Bart Wyatt, Andy Cunningham,
and John Buckley for their feedback about the method and paper.
Thanks also to Adam Pletcher, Jason Childress, and Chris Claflin
for putting together many of the test scenes that appear in this paper.

References

BAvoIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, J. A. L. D., AND SILVA,
C. T. 2007. Multi-fragment effects on the gpu using the k-buffer. In I3D '07:
Proceedings of the 2007 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA, 97-104.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND HUNT, N. 1988. The
triangle processor and normal vector shader: a vlsi system for high performance
graphics. In SIGGRAPH 1988, ACM, New York, NY, USA, 21-30.

ENGEL, W., 2008. Diary of a graphics programmer: Light pre-pass renderer. On-
line, accessed Jan. 27th, 2009. http://diaryofagraphicsprogrammer.
blogspot.com/2008/03/1light-pre-pass-renderer.html.

FILION, D., AND MCNAUGHTON, R. 2008. Effects & techniques. In ACM SIG-
GRAPH 2008 classes, ACM, New York, NY, USA, 133-164.

HARGREAVES, S., AND HARRIS, M., 2004. Deferred shading. Online, ac-
cessed Jan. 26th, 2009. http://developer.nvidia.com/object/
6800_leagues_deferred_shading.html.

HEIDMANN, T. 1991. Real shadows, real time. Iris Universe 18, 23-31.

KWOON, H. Y. 2004. The theory of stencil shadow volumes. In ShaderX2: Introduc-
tions and Tutorials with DirectX 9. Wordware Publishing, Inc., 197-278.

LEE, M., 2008. Prelighting. Online, accessed Feb. 10th, 2009. http:
//www.insomniacgames.com/tech/articles/0209/files/
prelighting.pdf.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. Pixelflow: high-speed rendering
using image composition. In SIGGRAPH 1992, ACM, New York, NY, USA, 231-
240.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering of 3-d shapes.
SIGGRAPH Comput. Graph. 24, 4, 197-206.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PEROCHE, B. 2006. Non-
interleaved deferred shading of interleaved sample patterns. In GH '06: Pro-
ceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, ACM, New York, NY, USA, 53-60.

SHISHKOVTSOV, O. 2005. Deferred shading in s.t.a.Lk.e.r. In GPU Gems 2. Addison-
Wesley, ch. 9, 143-166.

THIBIEROZ, N. 2004. Deferred shading with multiple render targets. In ShaderX2:
Shader programming Tips and Tricks with DirectX 9. Wordware Publishing, Inc.,
251-269.

VALIENT, M., 2007. Deferred rendering in killzone 2. Online, accessed Jan.
26th, 2009. Develop Conference http://www.guerrilla-games.com/
publications/dr_kz2_rsx_dev07.pdf.

